The affine primitive permutation groups of degree less than 1000

نویسندگان

  • Colva M. Roney-Dougal
  • William R. Unger
چکیده

In this paper we complete the classification of the primitive permutation groups of degree less than 1000 by determining the irreducible subgroups of GL(n, p) for p prime and pn < 1000. We also enumerate the maximal subgroups of GL(8, 2), GL(4, 5) and GL(6, 3). © 2003 Elsevier Science Ltd. All rights reserved. MSC: 20B10; 20B15; 20H30

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The primitive permutation groups of degree less than 2500

In this paper we use the O’Nan–Scott Theorem and Aschbacher’s theorem to classify the primitive permutation groups of degree less than 2500. MSC: 20B15, 20B10 1 Historical Background The classification of the primitive permutation groups of low degree is one of the oldest problems in group theory. The earliest significant progress was made by Jordan, who in 1871 counted the primitive permutatio...

متن کامل

On the Relational Complexity of a Finite Permutation Group

The relational complexity ρ(X,G) of a finite permutation group is the least k for which the group can be viewed as an automorphism group acting naturally on a homogeneous relational system whose relations are k-ary (an explicit permutation group theoretic version of this definition is also given). In the context of primitive permutation groups, the natural questions are (a) rough estimates, or ...

متن کامل

Some Constant Weight Codes from Primitive Permutation Groups

In recent years the detailed study of the construction of constant weight codes has been extended from length at most 28 to lengths less than 64. Andries Brouwer maintains web pages with tables of the best known constant weight codes of these lengths. In many cases the codes have more codewords than the best code in the literature, and are not particularly easy to improve. Many of the codes are...

متن کامل

Topics in Computational Group Theory: Primitive permutation groups and matrix group normalisers

Part I of this thesis presents methods for finding the primitive permutation groups of degree d, where 2500 ≤ d < 4096, using the O’Nan–Scott Theorem and Aschbacher’s theorem. Tables of the groups G are given for each O’Nan– Scott class. For the non-affine groups, additional information is given: the degree d of G, the shape of a stabiliser in G of the primitive action, the shape of the normali...

متن کامل

Bases for Primitive Permutation Groups and a Conjecture of Babai

A base of a permutation group G is a sequence B of points from the permutation domain such that only the identity of G fixes B pointwise. We show that primitive permutation groups with no alternating composition factors of degree greater than d and no classical composition factors of rank greater than d have a base of size bounded above by a function of d. This confirms a conjecture of Babai. Q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2003